

Three-way reversing valve

Thermostatic 3-way control valves

For heating and cooling systems

Three-way reversing valve

Three-way reversing valve for the distribution of mass flow in heating and cooling systems.

Key features

- Valve body in gunmetal corrosion-resistant and safe
- For all IMI Heimeier thermostatic heads and actuators
- Stainless spindle with double O-ring seal
- Outer O-ring can be replaced while under pressure

Technical description

Three-way reversing valve for the distribution of mass flow in heating and cooling systems, made of gunmetal, with protection cap.

Stainless spindle has double O-ring seal. Outer O-ring can be replaced without draining the system.

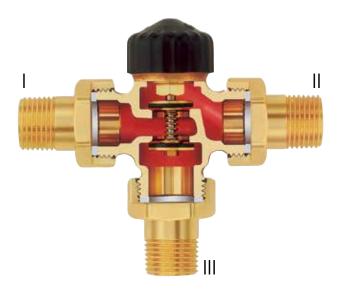
Models: flat sealing. Connection with threaded or soldering nipples.

Maximum allowable working pressure 10 bar.

Low-pressure steam 110°C (230°F)/

0.5 bar

Allowable differential pressure


DN 15 = 1.20 bar

DN 20 = 0.75 bar

DN 25 = 0.50 bar

Construction

Three-way reversing valve

Function

The EMO T thermal actuator is used for two-step control with auxiliary power.

In the model **normally open (NO)**, the straight passage I-II of the three-way reversing valve is open without, and the angled exit I-III is closed without current.

In the model **normally closed (NC)**, the straight passage I-II of the three-way reversing valve is closed without, and the angled exit I-III is open without current.

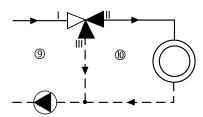
Thermostatic heads are used for proportional control without auxiliary power. They also operate in intermediate positions. When the temperature rises, the straight passage I-II is closed and the angled exit I-III is opened.

The TA-Slider 160, EMOLON, and/or EMO 3 / EMO 3/230 motorized actuators are used for proportional and/or three-step control with auxiliary power. The effective direction is determined by the controller or the connection.

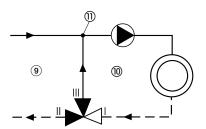
Application

Distributing function

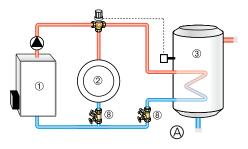
- Switching between heat consuming apparatuses such as the heating circuit and heater for potable water or between various heat generating devices such as boilers, heat pumps, or solar energy systems.
- Output control of heat exchangers via flow rate control, e.g. for air heaters, coolers or other heat exchangers. Volume flow remains steady in the primary circuit.

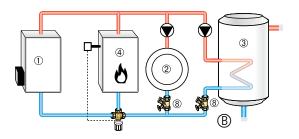

Mixing function

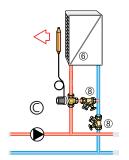
 Mixing control through installation in the return pipe (external mixing point). Approximately equal volume flow in the secondary circuit.

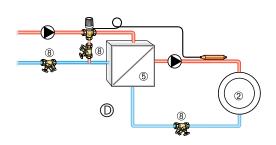

Principle

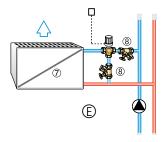
Pay attention to the flow direction, see function.


Distributing function




Mixing function




Sample application

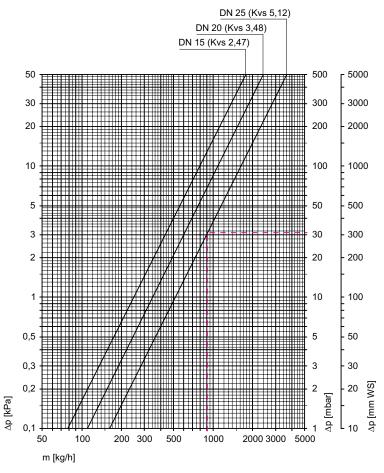
- 1. Oil/gas boiler
- 2. Heating circuit
- 3. Hot water storage
- 4. Boiler for solid fuels
- 5. Heat exchanger
- 6. Air heater
- 7. Fan-coil device
- 8. STAD balancing valve
- 9. Primary circuit
- 10. Secondary circuit

- A. Switching between heat consumers such as heating circuits and hot water storages with e. g. EMO T.
- B. Switching between heat generating devices such as an oil/gas boiler or boilers for solid fuels with e. g. EMO T.
- C. Flow rate control for constant blow-out temperature with air heaterswith thermostatic head K with contact sensor.
- D. Switching with fixed-command control of the flow temperature to a secondary circuit of the heat exchanger, such as heaters for potable water, industrial pools, and swimming pool water with thermostatic head K with contact sensor.
- E. Control of the water circuit from fan-coil devices (air conditioners / forced air convectors) with e. g. EMO T.

Note

The composition of the heat transfer medium should be one which avoids damage or the accumulation of stones in hot water heating systems, in accordance with VDI guide line 2035.

For industrial and long-distance energy systems, see applicable codes VdTÜV and 1466/AGFW FW 510.


Heat transfer media containing mineral oils or lubricants containing mineral oil can have seriously negative effects on the source apparatus and usually lead to the disintegration of EPDM seals.

When using nitrite-free frost and corrosion resistance solutions with an ethylene glycol base, pay close attention to the details outlined in the manufacturers' documentation, particularly details concerning concentration and specific additives.

Technical data

Diagram - Three-way reversing valve with actuator

Three-way reversing valve with Thermostatic head K *)

Three-way reversing valve with immersion/ sensor	Kv-value P-band [K]			Kvs	
	2,0	4,0	6,0	8,0	
DN 15	0,60	1,20	1,71	2,10	2,47
DN 20	0,70	1,50	2,39	3,10	3,48
DN 25	1,08	2,28	3,48	4,62	5,12

^{*)} The Kv values correspond to the flow in the direction of passage I-II at the given system deviations. The kvs-values corresponds to the flow in the direction I-II with a completely opened valve and in the direction I-III with a closed valve.

Sample calculation

Goal: Pressure loss Δp_v

Given: Three-way reversing valve DN 25 with thermal actuator

Heat flow Q = 21000 W

Temperature adjustment $\Delta t = 20 \text{ K } (70/50^{\circ}\text{C})$


Solution: Mass flow m = Q / (c \cdot Δt) =21000 / (1,163 \cdot 20) = 903 kg/h

 $C_V = \frac{K_V}{0.86}$

Pressure loss from diagram $\Delta p_v = 31$ mbar

 $Kv = Cv \cdot 0.86$

Articles

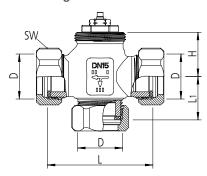
Three-way reversing valve

Flat sealing

DN	EAN	Article No
15	4024052222711	4160-02.000
20	4024052223114	4160-03.000
25	4024052223510	4160-04.000

Accessories – Flat sealing

Connecting nipple for flat sealing three-way reversing valves


DN valve		EAN	Article No		
Threaded nipple					
15 (1/2")	R1/2	4024052222810	4160-02.010		
20 (3/4")	R3/4	4024052223213	4160-03.010		
25 (1")	R1	4024052223619	4160-04.010		
Soldered ni	Soldered nipple				

Soldered nipple			
	Ø Pipe		
20 (3/4")	22	4024052225217	4160-22.039
25 (1")	28	4024052225415	4160-28.039

Dimensions

flat sealing

DN	D	L	L1	Н	SW	
15	G3/4	62	25,5	26,0	30	
20	G1	71	35,5	31,0	37	
25	G1 1/4	84	42,0	33,5	47	

SW = Spanner opening

D	L	I		
Threaded nipple				
R1/2	27,5	13,2		
R3/4	30,5	14,5		
R1	33	16,8		

D	L	I	
Solde	ring nipple	•	
22	23	17	
28	27	20	

